Las claves del sobrevuelo de Ultima Thule por la New Horizons

Durante miles de millones de años el pequeño cuerpo helado a las afueras del sistema solar ha estado dando vueltas al Sol lentamente sin que ningún suceso perturbase su gélida existencia. Situado a tal distancia que el Sol brilla con la misma intensidad que la Luna llena en una noche terrestre, este oscuro y frío astro solo ha experimentado colisiones ocasionales con micrometeoros y otros diminutos cuerpos interplanetarios. Pero esta fría placidez está a punto de ser perturbada. Porque el 1 de enero de 2019 el pequeño cuerpo, conocido oficialmente como 2014 MU69 y bautizado recientemente como Ultima Thule, recibirá la visita de la sonda New Horizons de la NASA. La nave pasará a toda velocidad, no sin antes recabar toda la información posible sobre este pequeño astro. Para ponernos en perspectiva, la última vez que Ultima Thule pasó por este punto de su órbita, hace casi 296 años, la especie humana todavía no había iniciado la revolución industrial y el caballo era el principal medio de transporte. Tres siglos más tarde somos capaces de enviar a los confines del sistema solar una nave de menos de 480 kg que funciona por el calor de la desintegración de isótopos radiactivos.

Ya queda poco para que la New Horizons realice el sobrevuelo de Ultima Thule (NASA/JHU-APL).

Después de mostrarnos en 2015 la exquisita complejidad de Plutón y sus cinco lunas, New Horizons nos enseñará de primera mano cómo es un objeto del cinturón de Kuiper, la «tercera región» más exterior del sistema solar. Técnicamente, Plutón es un cuerpo del cinturón de Kuiper, pero su gran tamaño —no en vano es un planeta enano— lo sitúa claramente en una categoría distinta a la inmensa mayoría de cuerpos helados que pueblan esta región. Por eso uno de los objetivos primarios de la misión New Horizons desde que se lanzó en 2006 era, además de sobrevolar Plutón, visitar un cuerpo «normal» del cinturón de Kuiper. Y es importante subrayar lo de «primario», porque el sobrevuelo de Ultima Thule no es un simple añadido a la exploración de Plutón, sino un elemento fundamental de la misión. Efectivamente, para que la misión de la New Horizons sea considerada como un éxito según los parámetros de la NASA, la sonda debe completar el sobrevuelo de un cuerpo del cinturón de Kuiper con éxito.

Ultima Thule está MUY LEJOS (NASA/JHU-APL).

El cinturón de Kuiper es una región formada por miles y miles de objetos situados más allá de la órbita de Neptuno. Igual que el cinturón de asteroides está compuesto mayoritariamente por cuerpos de pequeño tamaño hechos de roca y, en menor proporción, volátiles, el cinturón de Kuiper está compuesto por objetos con un mayor contenido en hielos (no solo hielo de agua, también de metano, nitrógeno y amoniaco, entre otros). Las órbitas de estos cuerpos son relativamente circulares y muy estables en términos dinámicos. En un principio el cinturón de Kuiper se propuso como el lugar de origen de los cometas de periodo corto, pero hoy sabemos que estos cometas proceden del llamado disco disperso, una zona del sistema solar que se solapa con el cinturón de Kuiper por su parte interior, pero que se extiende mucho más allá (y, por cierto, el astrónomo Gerard Kuiper no predijo la existencia de este cinturón: él imaginó una región de cuerpos helados que se habría creado justo después de la formación del sistema solar, pero creía que ya debía haber desaparecido).

Los mayores objetos transneptunianos (TNOs) y sus lunas (NASA).

Los objetos del cinturón de Kuiper (KBOs) son reliquias de la formación del sistema solar de hace 4 600 millones de años y, por lo tanto, guardan información sobre los dramáticos movimientos planetarios que provocaron la migración hacia el exterior de los planetas gigantes en este periodo. Por eso se cree que los KBOs se formaron más cerca del Sol que donde se encuentran en la actualidad. La migración hacia el exterior del sistema solar de Neptuno provocó que muchos de estos cuerpos fueran expulsados y agrupó a los restantes en el cinturón de Kuiper actual. Pero hasta que no veamos de cerca un KBO del cinturón principal no podemos saber hasta qué punto estas hipótesis son acertadas, de ahí el motivo de que la exploración de Ultima Thule sea una prioridad. Porque nadie sabe cómo será Ultima Thule. ¿Se parecerá exteriormente más a un cometa que un asteroide o será algo completamente diferente?

Trayectoria de la New Horizons (NASA).
Trayectoria de la New Horizons comparada con las otras cuatro naves que han escapado el sistema solar (NASA).

La elección de Ultima Thule como KBO a ser visitado por la New Horizons tras el sobrevuelo de Plutón se debió al simple azar. O mejor dicho, a que estaba en el lugar adecuado en el momento adecuado. La New Horizons se mueve en una trayectoria hiperbólica de escape del sistema solar que es prácticamente una línea recta. Debido a la enorme velocidad que lleva y a las escasas reservas de combustible, la capacidad de maniobra de la sonda es muy limitada. Por eso había que maniobrar la sonda muy poco después del encuentro con Plutón si se quería visitar un KBO. El problema es que no se descubrió ningún objeto en la trayectoria de la sonda hasta solo un año antes del encuentro con el planeta enano. Tras repetidas campañas de observación con el telescopio espacial Hubble, solamente se descubrieron dos objetos, conocidos como 2014 MU69 y 2014 PN70 (un tercer KBO descubierto por el Hubble quedó descartado de inmediato por estar demasiado cerca del límite de las prestaciones de la sonda). La NASA optó por visitar 2014 MU69 (inicialmente denominado PT1), descubierto el 26 de junio de 2014 (con una magnitud de 27), simplemente porque era el que estaba más cerca de la trayectoria de la New Horizons y, por ende, el que requería menos gasto de hidrazina. De hecho, la New Horizons podría llevar a cabo un sobrevuelo adicional de otro KBO en el futuro, si es que se descubre alguno más en su trayectoria.

2014 MU69 visto por el Hubble (NASA).

Para llegar a 2014 MU69 la New Horizons realizó en 2015 cuatro maniobras propulsivas los días 22, 25 y 28 de octubre y el 4 de noviembre. La Delta-V total de las maniobras fue de 57,2 m/s, aunque la sonda tenía reservas para una Delta-V máxima de 130 m/s. El 9 de diciembre de 2017 los motores de la New Horizons se volvieron a encender durante 152 segundos para frenar la velocidad de tal forma que la sonda coincidiese en el mismo lugar del espacio con 2014 MU69 el 1 de enero de 2019. El 21 de diciembre la sonda entró en hibernación con el objetivo de ahorrar energía y combustible hasta el 5 de junio de 2018. En noviembre y diciembre de 2017 el equipo de la misión, con Alan Stern a la cabeza, lanzó un concurso público totalmente al margen de la Unión Astronómica Internacional (UAI) —el único organismo que tiene autoridad para poner nombre a los cuerpos celestes— para ponerle un nombre a 2014 MU69 y el 13 de marzo de 2018 seleccionó Ultima Thule de entre los nombres finalistas (los otros nombres más votados que gozaron del agrado de Stern y su equipo fueron Abeona, Pharos, Pangu, Rubicon, Olympus, Pinnacle y Tiramisu). No obstante, hay que recalcar que se trata de un nombre informal hasta que la UAI tenga a bien aprobarlo, si es que lo hace. A mediados de agosto la sonda pasó de modo de giro a modo estabilizado en tres ejes para usar sus instrumentos y comenzó la fase de navegación óptica hacia su objetivo (la fase de aproximación propiamente dicha). La primera imagen de Ultima Thule obtenida por la sonda se captó el 16 de agosto mediante la cámara telescópica en blanco y negro LORRI (Long Range Reconnaissance Imager).

Primera imagen de Ultima Thule captada el 16 de agosto de 2018 mediante la cámara LORRI (JHU-APL)

El 2 de diciembre la sonda realizó una última maniobra de 105 segundos con una Delta-V de apenas 1 m/s para refinar la hora del encuentro, que será a las 05:33 UTC del 1 de enero de 2019 (originalmente debía ser a las 05:35 UTC). Durante este último mes la nave ha estado buscando posibles peligros alrededor de Ultima Thule, como por ejemplo, lunas o anillos, pero no ha descubierto nada de nada. Como resultado, el 18 de diciembre el equipo de la misión decidió mantenerse en la trayectoria más próxima al objetivo y no seguir la trayectoria de reserva, a mayor distancia (10 000 kilómetros). Así, la sonda pasará a una distancia mínima de 3 500 kilómetros de Ultima Thule a una velocidad de 14,43 km/s. En el momento del sobrevuelo, el más lejano realizado por un artefacto humano, Ultima Thule estará a 6 470 millones de kilómetros del Sol (43,3 Unidades Astronómicas).

Geometría del sobrevuelo (NASA/JHU-APL).
Escala del encuentro comparado con la Tierra (Roman Tkachenko).

Aunque se ha presentado a Ultima Thule como un pequeño cuerpo del cinturón de Kuiper, lo cierto es que su diámetro alcanza entre 20 y 30 kilómetros, un tamaño considerable para un cuerpo menor del sistema solar. Como comparación, el cometa 67P que visitó la sonda Rosetta mide unos míseros 4 x 2 kilómetros, y mejor no hablamos de los pequeños asteroides Ryugu y Bennu explorados este año por Hayabusa 2 y OSIRIS-REx respectivamente. Las observaciones de Ultima desde la Tierra indican que el cuerpo es alargado, posiblemente un binario de contacto o incluso puede que sea un objeto doble. En los próximos días saldremos de dudas. Ahora que está a menos de seis millones de kilómetros de su objetivo, la New Horizons debería ser capaz de detectar la curva de luz de Ultima Thule, una característica que nos da una pista sobre su periodo de rotación. Sin embargo, el equipo de la sonda no ha podido detectar una curva digna de tal nombre. Un pequeño misterio para abrir boca de cara al 1 de enero, aunque la explicación más lógica es que el eje de rotación de Ultima apunte hacia la sonda.

Sabemos que Ultima Thule tiene una superficie oscura y rojiza por culpa de la presencia de sustancias orgánicas (tolinas). El sobrevuelo de la New Horizons es todo un reto teniendo en cuenta la gran velocidad relativa y la tenue luz del Sol a esa distancia, a lo que hay que añadir la velocidad de rotación de Ultima, lo que provocará que las imágenes de mayor resolución puedan salir ligeramente borrosas. Por estos motivos, desde el 28 de diciembre la sonda se dedicará a fotografiar a Ultima para mejorar la determinación de su órbita, ya que todavía existe un error en la estimación de la posición de varios miles de kilómetros. La sonda ya no puede cambiar de trayectoria, pero la navegación óptica es fundamental para saber a dónde tienen que apuntar los instrumentos en el momento del sobrevuelo. El 29 de diciembre la sonda obtendrá una curva de luz de seis horas para medir la rotación de Ultima Thule, la primera curva clara de este tipo que captará la sonda.

Fases del sobrevuelo (NASA/JHU-APL).

La mayoría de las observaciones científicas de la New Horizons se llevarán a cabo en un periodo de dos días antes y después del momento del encuentro. El 31 de diciembre la sonda transmitirá dos imágenes de Ultima Thule antes del encuentro como medida de seguridad por si algo sucede y la nave no logra restablecer el contacto con la Tierra. La secuencia de observaciones durante el encuentro serán, como en el caso de Plutón, totalmente automáticas. Para ahorrar presupuesto, la sonda fue construida con un diseño compacto y la nave debe girar sobre sí misma para apuntar cada instrumento al objetivo (las Voyager llevaban una plataforma móvil con los instrumentos principales). Las imágenes se recibirán a las 04:56 UTC y a las 20:55 UTC, con una resolución de 8 y 5 kilómetros por píxel, respectivamente. A pesar de la baja resolución será posible determinar la forma aproximada de Ultima Thule y averiguar si es un objeto doble o no. La sonda sobrevolará Ultima Thule a las 05:33 UTC del 1 de enero, pero no será hasta seis horas más tarde cuando llegue a la Tierra la señal con los datos. Entre las 15:28 y las 15:45 UTC se recibirá la telemetría del estado de la sonda para saber si ha sobrevivido al encuentro y en qué estado se encuentra, pero habrá que esperar hasta las 20:15 UTC para que lleguen las primeras imágenes de la cámara LORRI en blanco y negro con una resolución de 100 metros por píxel (el momento de su publicación es otro tema, ya que dependerá del equipo de la misión).

Comparación de la máxima resolución que logrará la cámara LORRI en el sobrevuelo de Ultima comparada con la del sobrevuelo de Plutón (NASA/JHU-APL).

Dependiendo cómo haya ido el encuentro, el 2 de enero a las 01:55 UTC llegarán más imágenes, incluyendo una de LORRI a 140 metros por píxel y otra de la cámara a color MVIC a 900 metros por píxel. Entre el 3 y el 8 de enero la sonda realizará más observaciones, incluyendo un interesante experimento en el que la red de espacio profundo de la NASA (DSN) enviará una señal de radio que rebotará en Ultima para ser captada por la New Horizons. Como ocurrió con el encuentro con Plutón, la mayoría de los datos se enviarán meses después del encuentro debido a las limitaciones del sistema de comunicaciones de la sonda. En el caso de este sobrevuelo se espera recabar hasta 50 gigabits de datos, los cuales no se terminarán de enviar a la Tierra hasta septiembre de 2020. Como anécdota, el encuentro probablemente se producirá en medio del «apagón» de la NASA y otras agencias del gobierno federal estadounidense. Esta situación no repercutirá en las operaciones de la sonda, pero sí en los servicios de relaciones públicas de la misión.

Instrumentos de New Horizons (NASA).
Partes de la New Horizons (NASA).
Ultima Thule a la vista (NAS/JHU-APL).

Para que nos hagamos una idea, las imágenes de mayor resolución de Ultima Thule serán una cosa tal que así:

Simulación de la imagen de máxima resolución de Ultima Thule que verá la New Horizons con su cámara LORRI (lo que se ve es Febe, la luna de Saturno)(NASA/JHU-APL).
Así será la mejor imagen en color de Ultima Thule que obtendrá la cámara MVIC (se ha usado Fobos para simular Ultima) (NASA/JHU-APL).
Mejores observaciones previstas para el sobrevuelo (NASA).

Y, ahora que quedan pocos días para salir de dudas, ¿qué tal si apostamos por el aspecto que tendrá Ultima Thule? El equipo de la New Horizons apuesta por que será más parecido al cometa Wild 2 que al cometa 67P, aunque también propone a Febe, una luna de Saturno que podría ser un KBO capturado o Hiperión, otra luna de Saturno. ¿Con cuál te quedas? Yo apuesto por un Febe con menos cráteres.

¿Cómo será el aspecto de Ultima Thule?

APÉNDICE: la nave

Por si a alguien se le ha olvidado cómo es la New Horizons, recordemos las características de esta sonda. La New Horizons es una pequeña nave comparada con las Voyager. Su masa era de 478 kg al lanzamiento, pero ahora es inferior (en el despegue incluía 76,8 kg de hidrazina). La hidrazona se usa para alimentar 16 pequeños propulsores para maniobras de corrección de trayectoria. Cuatro de estos propulsores tienen un empuje de 4,4 newtons y sirven para pequeñas correcciones de la trayectoria, mientras que los otros doce poseen un empuje de 0,8 newtons para ajustes de la posición de la nave (en un momento dado solo se usan ocho propulsores y el resto actúa como reserva).

Captura de pantalla 2014-12-08 a las 22.14.11
Partes de la sonda y sus instrumentos (NASA).

Tiene unas dimensiones de 0,7 metros de alto, 2,1 metros de largo y 2,7 metros de ancho, con una antena de comunicaciones de alta ganancia (HGA) de 2,1 metros de diámetro. Para ahorrar energía, la sonda ha entrado en hibernación durante varias fases de su misión, aunque no se trata de una ‘hibernación profunda’ como la de la sonda europea Rosetta, sino una más suave. Cuando la sonda está en este modo se emplea una antena de media ganancia (MGA) situada sobre la antena principal. La sonda puede estabilizarse mediante giro —durante la fase de vuelo de crucero— o en tres ejes —durante los sobrevuelos—. La estabilización mediante giro permite ahorrar combustible y garantizar las comunicaciones con la Tierra, pero durante los encuentros es necesario estabilizar la nave en sus tres ejes para apuntar los instrumentos. Usando dos sensores estelares y un conjunto de acelerómetros, el ordenador de a bordo puede apuntar la sonda a cualquier punto con una precisión de 0,1º. En cuanto al cerebro de la sonda, la New Horizons emplea dos módulos IEM (Integrated Electronics Module) redundantes, cada uno de ellos con un ordenador y una memoria de estado sólido independientes (con una capacidad de 64 Gbits cada uno).

Partes de la sonda y sus instrumentos (NASA).
Partes de la sonda y sus instrumentos (NASA).

La New Horizons emplea un generador de radioisótopos (RTG) de tipo F-8 con 18 módulos GPHS (General Purpose Heat Source) idéntico a los usados por las sondas Cassini, Galileo y Ulysses. En principio debía llevar 10,9 kg de óxido de plutonio-238 para obtener electricidad en las afueras del sistema solar, pero las carencias en la producción de plutonio en los EEUU provocó que finalmente se incluyesen solamente 9,75 kg, lo que redujo su potencia prevista en un 15%. El RTG era capaz de generar 240 vatios en el momento del despegue, pero su potencia ha disminuido con los años (a un ritmo de unos 3,5 vatios por año). Para el encuentro con Ultima Thule la sonda dispondrá de 190 vatios. Al disponer de un solo RTG (las Voyager llevaban dos) será muy difícil que la New Horizons siga operativa a partir de 2030 y prácticamente imposible que llegue a 2040.

Captura de pantalla 2014-12-09 a las 0.01.19
RTG del tipo GPHS de la New Horizons (NASA).

Unos 15 vatios de calor procedentes del RTG se usan para mantener la temperatura del interior de la nave ligeramente por encima de los 0º C, evitando así la congelación de la hidrazina y el correcto funcionamiento de la electrónica. La sonda está cubierta con una serie de mantas aislantes para mantener la temperatura, aunque en caso de que esta supere los 25º C se acciona un sistema especial de ‘persianas’ para refrigerar el interior del vehículo. Bajo el material aislante se encuentran varias capas de kevlar que actúan como blindaje contra los impactos de micrometeoros.

Captura de pantalla 2014-12-08 a las 23.56.37
Propulsores de la sonda y dirección del empuje (NASA).

Los siete instrumentos científicos de la New Horizons consumen 28 vatios y tienen una masa total de 30,2 kg, lo que resulta sorprendente si tenemos en cuenta que solamente la cámara de la sonda Cassini tiene una masa superior. A pesar de todo, nunca antes una primera misión de reconocimiento de un cuerpo del sistema solar ha estado equipada con un conjunto de instrumentos tan potentes. Veamos cuáles son y qué papel jugarán en el encuentro con Plutón:

Ralph: es la cámara a color de la sonda. Es un instrumento de 10,3 kg altamente sensible. Ralph consiste en realidad en dos cámaras distintas. Por un lado tenemos tres sensores en blanco y negro y cuatro en color que forman parte de la cámara a color MVIC (Multispectral Visible Imaging Camera), que funciona en las longitudes de onda de 0,4 a 0,95 micras y tiene un campo de visión de 5,7º), mientras que por otro lado tenemos el espectrómetro infrarrojo LEISA (Linear Etalon Imaging Spectral Array, que funciona en el rango de longitudes de onda de 1,25 a 2,5 micras).

LORRI (LOng Range Reconnaissance Imager): consiste en una cámara en blanco y negro acoplada a un auténtico telescopio con un campo de visión de 0,29º y 20,8 centímetros de diámetro. Con 8,8 kg de masa y un consumo de 5,8 vatios, LORRI ha sido y será fundamental a la hora de tomar imágenes de navegación.

Alice: es un espectrómetro ultravioleta que trabaja en 1024 canales espectrales en el rango de frecuencias de 500 a 1800 angstroms. Posee un detector con 32 000 píxels, lo que no está nada mal si lo comparamos con los dos (!) píxeles del espectrómetro ultravioleta de las Voyager.

REX (Radio Science Experiment): REX emplea la antena principal de 2,1 metros de diámetro para recibir las señales emitidas por la red de espacio profundo de la NASA (DSN) con el fin de estudiar las características de Ultima Thule.

SWAP (Solar Wind at Pluto): como indica su nombre, este instrumento de 3,3 kg estudia la interacción de Ultima Thule con el viento solar. SWAP puede detectar iones con energías de hasta 6,5 keV.

PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation): este pequeño instrumento de 1,5 kg complementa a SWAP y buscará los átomos neutros que puedan escapar de Ultima. Se trata de un espectrómetro de masas capaz de medir partículas con energías de hasta 1000 keV.

SDC (Student Dust Counter): es el primer instrumento en una sonda espacial interplanetaria diseñado y construido por estudiantes universitarios (en este caso de la Universidad de Colorado en Boulder). Mide las partículas que impacten contra la sonda para determinar la densidad de polvo.

Captura de pantalla 2014-12-08 a las 22.20.02
Instrumentos de la New Horizons (NASA).
Un póster de la misión (NASA).

Referencias: 

  • http://pluto.jhuapl.edu/
  • http://pluto.jhuapl.edu/News-Center/Resources/Press-Kits/NewHorizonsPressKit__UT.pdf
  • http://www.planetary.org/blogs/emily-lakdawalla/2018/what-to-expect-new-horizons-mu69-ultima-thule.html


51 Comentarios

  1. Qué ganas tengo de que lleguen las fotos! Será como un regalo de reyes acertado por una vez!

    Puesto a apostar… Al menos dos zonas muy diferenciadas en color. Una más roja, otra más gris, una más lisa y la otra irregular. No sé ven bloques ni prácticamente cráteres. Un Caronte en pequeño más que un asteroide. Si, se que es seguramente imposible, pero ya que no apostamos nada, puedo soñar.

  2. Me parece que sera un cuerpo doble que vemos desde un polo y parecido a Febe.

    Una pregunta de RTGs: los RTGs son como una bateria que obtiene su energia de la desintegracion del Pu-238. ¿Es posible regular la produccion de energia de este o es fija, y al decir “regular la produccion de energia” no me refiero a simplemente dejar que la energia producida por el RTG y no usada se pierda en el espacio?

    (PD: PEPSSI y seguramente no PEPSI por temas de marcas. A ver cuando llega una COCCA-COLA o algo asi)

    1. Un RTG produce calor, y por tanto electricidad, al ritmo de la desintegración natural (decay) del isótopo radioactivo escogido. Todo el excedente no usado de esa energía debe ser radiado al espacio para evitar que la sonda se recaliente.

      Que yo sepa, el propio diseño RTG no admite que la desintegración radioactiva se pueda retardar o acelerar. No hay una reacción en cadena artificialmente inducida, y por tanto regulable, como ocurre en los auténticos reactores nucleares.

      Saludos.

      1. En otras palabras, que son tambien mas seguros de lo que algunos dicen al no haber ni masa critica ni nada de lo que hay en un reactor nuclear real.

        Lastima que no haya manera de almacenar esa energia que se desperdicia entonces.

  3. FUERA DEL TEMA:

    La empresa Rossiyskiye Kosmícheskiye Sistemy, dependiente de Roscosmos, ha desclasificado documentos de la red de antenas soviéticas de espacio profundo que permitierón en los 60 y 70 (en especial desde Eupatoria, en Crimea) los éxitos del pograma Luna, Venera y Mars (así como capacitarón a la URSS para lanzar misiones al sistema solar exterior, aunque nunca se produjeran); hasta la instalación de las más modernas antenas RT-70 que se utilizan en la actualidad (que continuarón con los programas Venera y Mars, y permitierón los programas Fobos y VeGa).

    Enlace informe publicado del proyecto “Plutón” en 1961 (144 páginas): http://russianspacesystems.ru/wp-content/uploads/2018/12/1961_Pluton.pdf

  4. Daniel y su trabajo no se pueden creer!
    Esta entrada se llama “Las claves del sobrevuelo de Ultima Thule por la New Horizons” pero la misma “No tiene nombre” como decía mi abuela de Galicia!!!
    La introducción es literatura de alto nivel! y del extenso y detallado contenido ni que hablar!
    Gracias Daniel por los regalos inteligentes con que nos presentas todo el tiempo, todo el año!!!
    Nunca podremos agradecerte lo suficiente. ..
    Mi mujer quiere conocer España y yo ando con pocas ganas de viajar por el esfuerzo y por mi edad: creo que voy a cambiar de idea con tal de pasar a darte un apretón de manos y agradecerte personalmente por tu ciudad!
    Como dicen los “fulboleros” por acá: “Idolo! no te mueras nunca!” De paso salúdalo a Messi de mi parte si andas por Cataluña…😉
    Te deseo lo mejor desde la Patagonia argentina!
    Un fuerte Abrazo y Felices Fiestas!
    Willy K.

  5. Ya se que no tiene fundamento científico pero con tanta cosa dando vueltas por el cinturón de Kuiper da la impresión que la New Horizons va a chocarse con algo en cualquier descuido del navegador!!!

  6. Acabo de ver la conferencia de prensa de Stern y compañía, con imagen de Ultima incluida. No se distingue mucho con sólo 6 o 7 píxeles pero parece que no es un objeto doble sino simplemente alargado.

Deja un comentario

Por Daniel Marín
Publicado el ⌚ 28 diciembre, 2018
Categoría(s): ✓ Astronáutica • Astronomía • NASA • Sistema Solar