Consecuencias de la destrucción del Kosmos 1408: ocho claves para entender el problema de la basura espacial

Por Daniel Marín, el 23 noviembre, 2021. Categoría(s): Astronáutica • Rusia ✎ 104

Hace cosa de una semana Rusia destruyó el antiguo satélite soviético Kosmos 1408 mediante un misil Núdol antisatélite (DA-ASAT). La colisión del interceptor cinético tuvo lugar a una altura de unos 490 kilómetros y ocasionó una nube de miles de fragmentos situados en órbitas situadas entre los doscientos y los mil kilómetros, aproximadamente. Es la cuarta prueba antisatélite en lo que llevamos de siglo después de que China, EE UU e India hayan hecho lo propio estos últimos años (se cree que Rusia quiso llevar a cabo esta prueba como demostración porque el interceptor cinético del Núdol podría ser similar al empleado por el sistema antibalístico Aerostat). No obstante, y como suele ocurrir en estas ocasiones, la prueba ha puesto de manifiesto algunas lagunas sobre los fenómenos relacionados con la mecánica orbital y los riesgos de la basura espacial en órbita baja. Repasemos las más importantes.

Órbita del Kosmos 1408 antes de su destrucción (LeoLabs).

1. Los satélites no se «derriban»

A raíz de la destrucción del Kosmos 1408 muchos medios titularon la noticia haciendo referencia al «derribo» —shot down— del viejo satélite soviético. Obviamente, esto no es así. Los satélites no son aviones que caen inmediatamente al sufrir daños. En un impacto en órbita a alta velocidad entre un proyectil cinético y un satélite —del orden de 5 a 10 km/s— se crean miles de fragmentos con tamaños que van desde milímetros a varios metros, dependiendo de la geometría del impacto y la masa del objetivo. Según cómo sea el choque y la órbita del satélite sí que es posible que algunos pedazos grandes reentren poco después, pero, en general, los pedazos siguen en órbita, dispersándose con el tiempo. Vale la pena mencionar que esta falsa creencia de que los satélites pueden caer a plomo si sufren algún problema es un error habitual en muchas películas de temática espacial.

2. No hay altura orbital «buena» para destruir un satélite

En principio, cuanto mayor sea la altura del blanco las consecuencias son más graves porque los fragmentos estarán más tiempo en órbita. No olvidemos que cualquier objeto en órbita baja sufre un ligero pero continuo frenado atmosférico que provoca que acabe reentrando al cabo de un tiempo. Un satélite en una órbita de unos 200 kilómetros puede reentrar al cabo de unos pocos días, mientras que otro a una altura de unos 400 kilómetros —como la ISS— es capaz de aguantar años. Por contra, un satélite en una órbita de mil kilómetros se quedará allá arriba durante siglos (la duración precisa depende del ciclo solar y del coeficiente balístico de los objetos). Sin embargo, y esto es lo importante, una prueba antisatélite siempre envía fragmentos a órbitas más altas y bajas que la altura del blanco.

Diagrama de Gabbard de los fragmentos de la destrucción del Kosmos 1408. Se aprecian numerosos fragmentos por debajo y, sobre todo, por encima de la órbita inicial del blanco (LeoLabs).

Por ejemplo, la prueba ASAT estadounidense Burn Frost de 2008 tuvo como blanco el satélite militar USA-193 (NROL-21) situado a tan solo 250 kilómetros de altura. Esto no impidió que algunos fragmentos llegasen a más de 2500 kilómetros. A pesar de que fue presentada como una «prueba segura», los fragmentos también pusieron en peligro a la ISS, como lo hicieron los ocasionados por la llamada misión Shakhti de India en 2019, cuando se destruyó el Microsat-R. En esta ocasión, el satélite, situado a una altura parecida a la de la prueba estadounidense, creó una nube de objetos que se extendieron hasta más allá de los 1800 kilómetros. La mayoría de los pedazos originados en estas pruebas no tienen órbitas circulares, sino elípticas, con perigeos situados más o menos a la altura de la órbita inicial del blanco y apogeos más altos, por lo que intersectan un volumen de espacio mucho mayor (esto se ve claramente en los denominados diagramas Gabbard que se suelen usar para analizar la dispersión de los pedazos de una colisión espacial). Las colisiones en órbitas altas son también más peligrosas porque, después de un tiempo, los fragmentos acaban pasando por órbitas más bajas, pero, como vemos, no hay «órbitas seguras» para efectuar pruebas ASAT.

Diagrama de Gabbard de la destrucción del satélite estadounidense USA-193. Se aprecian muchos fragmentos en órbitas superiores, incluida a la altura de la ISS (Marco Langbroek).

3. ¿De qué depende que una colisión sea más peligrosa que otra?

Además de la altura orbital, hay que tener en cuenta la masa del blanco y la geometría del impacto. La masa del Kosmos 1408 era, desgraciadamente, muy elevada (unas 2,2 toneladas) comparada con la de los objetivos de pruebas ASAT previas. Afortunadamente, parece que la geometría elegida del choque sí que minimizó la dispersión de pedazos, ya que el interceptor cinético Núdol se aproximó por «detrás» en el sentido de avance del satélite en su órbita. De hecho, parece que la colisión no fue del tipo hiperveloz —o sea, a velocidades relativas superiores a los 6 km/s—, lo que explicaría la escasa cantidad de fragmentos generado por la misma (por encima de esta velocidad el metal se comporta como un líquido y el número de pedazos aumenta significativamente). Esto podría ser la razón del relativamente bajo número de fragmentos —unos 1500 detectados— a pesar de que el blanco tenía una masa de 2,2 toneladas (como comparación, la prueba ASAT china de 2007 generó unos 3000 fragmentos al destruir el satélite Fengyun 1C, de950 kg).

Satélite militar soviético Tselina-D (KB Yuzhnoe).

4. Contar los pedazos no es fácil

Los militares rusos han declarado que la destrucción del Kosmos 1408 no supuso un problema para la ISS porque se generaron pocos fragmentos —«solo» 1500— y la mayoría quedó en una órbita similar a la que tenía el Kosmos 1408. Lamentablemente, esto no es del todo cierto. Aunque es verdad que el número de fragmentos detectados por debajo de los 490 kilómetros es relativamente escaso, la prueba sí que generó pedazos en órbitas que van desde los 400 a 800 kilómetros. Pero la clave es que aquí solo podemos hablar de «pedazos detectados». El seguimiento mediante radar de estos fragmentos es muy complejo —la cobertura no es global, pues las potencias dotadas de estos sistemas no suelen compartir datos por motivos obvios—, así que siempre hay una enorme incertidumbre con respecto al número de pedazos creados por estos sucesos. Más preocupante es el hecho de que los radares suelen ser «ciegos» a los trozos de menos de diez centímetros, que, aunque sean invisibles, pueden destruir total o parcialmente un satélite.

5. El riesgo a corto plazo disminuye localmente, pero aumenta a largo plazo en toda la órbita baja

Seguidamente a la destrucción del Kosmos 1408, la NASA ordenó a los astronautas de la ISS que se «refugiasen» en las naves de retorno (Soyuz y Dragon) y cerrasen algunas escotillas de la estación por si acaso algún fragmento les alcanzaba (es de suponer que China hizo lo mismo con los tres tripulantes de su estación espacial, aunque no lo sabemos). Un tiempo después, la alerta fue desactivada (eso sí, el cierre de algunas escotillas se mantuvo durante días). ¿Por qué? ¿Acaso los fragmentos habían desaparecido? La respuesta es doble. Por un lado, y como comentábamos más arriba, lleva un tiempo saber cuántos fragmentos se han generado y cuál es su densidad. El segundo motivo es que los fragmentos se van dispersando con el tiempo. Al principio se crea una nube relativamente localizada en una zona de la órbita —motivo por el cual el peligro de colisión con la ISS se repetía cada 93 minutos, el periodo orbital de la estación, cada vez que esta pasaba por la región en la que estaban los fragmentos—, pero luego los fragmentos se fueron dispersando a lo largo de la órbita.

La ISS es un daño colateral de las pruebas ASAT (NASA).

A continuación, la diferente altura de cada uno de los pedazos provoca que su plano orbital vaya girando con el tiempo —la misma técnica que usan los satélites Starlink para situarse en sus órbitas definitivas— y acaban cubriendo toda la órbita baja en órbitas con una inclinación similar a la del blanco original (86º en este caso; lógicamente, si la órbita es ecuatorial —inclinación de 0º—, los fragmentos no se expandirán mucho más allá de esta inclinación; a cambio, su densidad será mayor). Más adelante, la diversa relación masa/área acaba por dispersar los fragmentos en alturas por debajo de la inicial debido al frenado atmosférico. Es decir, al cabo de un tiempo la nube de fragmentos se dispersa por toda la órbita baja. Esto quiere decir que el riesgo inicial es muy alto, aunque solo para aquellos satélites que tengan órbitas que intersecten la de la nube de pedazos a la altura adecuada. Por contra, pasado un tiempo el riesgo disminuye, pero se distribuye para todos los objetos situados en órbita baja. Por tanto, una vez más, no hay «órbitas seguras». Las pruebas ASAT afectan a todas las potencias espaciales por igual.

6. Por qué ahora una prueba es ASAT es más peligrosa que nunca

Las pruebas ASAT de 2007 (China) y de 2008 (EE UU) fueron actos irresponsables, pero las llevadas a cabo por India (2019) y, ahora, Rusia (2021) son todavía peores. ¿Qué ha cambiado? Pues el número de satélites activos en órbita baja. Para que nos hagamos una idea, alrededor de 1970 apenas había unos doscientos satélites activos en la órbita baja en un momento dado. En 2010 había unos mil. Ahora nos acercamos a los tres mil (unos 1700 de ellos son Starlink). La destrucción del Kosmos 1408 ha generado miles de fragmentos justo a la altura de las órbitas en las que se encuentran los Starlink de SpaceX (unos 550 kilómetros), por lo que el riesgo de que estos satélites sean alcanzados por un trozo de basura espacial se ha incrementado súbitamente en un porcentaje importante (más del 10%).

Objetos en órbita baja con respecto al tiempo. Se aprecia la contribución de las priebas ASAT china de 2007 y la colisión entre el Iridium 33 y el Cosmos 2251 en 2009 como los dos principales sucesos que han incrementado la cantidad de restos en órbita baja (Jonathan McDowell).

7. A largo plazo, lo más peligroso no son los objetos pequeños

Al ver películas como Gravity podemos pensar que lo más peligroso de estas colisiones son los pequeños pedazos que se generan, sobre todo los inferiores a 10 cm. Pese a ser invisibles al radar, pueden destruir un satélite sin problemas. Y sí, sin duda, estos objetos son un enorme peligro a corto plazo, pero, afortunadamente, tienden a reentrar mucho antes que los objetos más grandes al tener una relación masa/área (coeficiente balístico) menor (obviamente, a mayor altura orbital, más tardarán en reentrar). Por contra, los pedazos más grandes situados en órbitas altas pueden permanecer décadas o siglos.

8. No solo ASAT

Relacionado con el punto anterior, ¿cómo podemos reducir el número de objetos en órbita baja? De entrada, no realizando estúpidas pruebas antisatélite. Yendo un paso más allá, también podríamos intentar no dejar en órbita etapas superiores de cohetes. De hecho, muchas de estas etapas que siguen en órbita baja son autenticas bombas de relojería, ya que contienen en su interior una importante cantidad de propergoles susceptibles de explotar cuando entren en contacto dentro de unos años en el momento que los sellos y juntas que ahora los separan se degraden. Otro componente al que le gusta explotar son las baterías, así que hay que asegurarse que estas piezas no revienten en órbita. Por último, las colisiones entre satélites son otra causa importante de basura espacial. La colisión entre el Iridium 33 y el Kosmos 2251 en 2009 ha sido el segundo suceso que más restos ha generado en los últimos quince años después de la prueba ASAT china que tuvo lugar dos años antes. Lógicamente, para evitar estas colisiones lo ideal es que los satélites que leguen al final de su vida útil reentren antes de que queden sin control, algo que va a ser especialmente problemático con todos los proyectos de megaconstelaciones que se avecinan.

Densidad de basura espacial en órbita baja. En rojo el aumento debido a la destrucción del Kosmos 1408 (LeoLabs).

Más adelante, además de evitar llenar la órbita baja con pedazos de chatarra, deberíamos plantearnos proyectos serios para eliminar la basura espacial (iniciativas hay muchas). Está claro que para que estos proyectos tengan éxito resulta necesaria la cooperación internacional, pero me temo que los tiempos no son muy propicios para aventuras de este tipo.

Referencias:

  • https://leolabs-space.medium.com/analysis-of-the-cosmos-1408-breakup-71b32de5641f
  • https://planet4589.org/space/index.html


104 Comentarios

  1. Yo habría pensado que los trozos más grandes son los que acaban reentrando antes, por le mero hecho de tener un «rozamiento» mayor con las capas altas de la atmosfera, pero resulta que es al revés, que los trozos más pequeños son los que reentran antes, curioso

Deja un comentario