Puesto en órbita el observatorio chino de materia oscura DAMPE (CZ-2D)

Por Daniel Marín, el 21 diciembre, 2015. Categoría(s): Astronáutica • Astronomía • China • Lanzamientos ✎ 9

China ha puesto en órbita su primer observatorio espacial para detectar materia oscura. El 17 de diciembre de 2015 a las 00:12 UTC China lanzó el satélite DAMPE (Wukong) desde el complejo LC-43 (SLS-2) del centro espacial de Jiuquan mediante un cohete Larga Marcha CZ-2D (Y31). Este ha sido el 16º lanzamiento orbital de China en 2015.

Lanzamiento del DAMPE (Xinhua).
Lanzamiento del DAMPE (Xinhua).

DAMPE

DAMPE (DArk Matter Particle Explorer) es un observatorio de rayos gamma y rayos cósmicos de 1900 kg (de los cuales 1400 kg corresponden a la carga útil) construido por la Academia de Ciencias de China. DAMPE ha sido bautizado como Wukong (悟空), que literalmente significa ‘rey mono’, en honor del famoso personaje mitología china, pero que al mismo tiempo es un juego de ideogramas que significa ‘conocer el espacio’. El objetivo principal de DAMPE es medir electrones y rayos gamma con alta resolución para poder detectar así la elusiva materia oscura. La mayoría de modelos teóricos preven que la materia oscura está formada por partículas ‘frías’ (o sea, que se mueven a bajas velocidades) y que interaccionan muy poco con la materia normal (partículas WIMPs). De acuerdo con algunos de estos modelos, las partículas de materia oscura podrían ser sus propias antipartículas y por lo tanto resultarían aniquiladas al encontrarse entre sí, emitiendo radiación y otras partículas de ‘materia normal’ en el proceso. Otros modelos sugieren que estas partículas de materia oscura se desintegrarían espontáneamente, también emitiendo partículas que pueden ser detectadas fácilmente desde la órbita terrestre en forma de rayos cósmicos. Así, aunque DAMPE no podrá detectar partículas de materia oscura, sí que en teoría podrá ver los productos de su desintegración.

Observatorio DAMPE (
Observatorio DAMPE (The DAMPE collaboration).

Además, DAMPE podrá detectar supernovas, púlsares y otras fuentes astrofísicas de alta energía. DAMPE incluye cuatro instrumentos: PSD (Plastic Scintillator Strips Detector), STK (Silicon-Tungsten Tracker), BGO (Bismuth Germanium Oxide Calorimeter) y NUD (Neutron Detector). El satélite será capaz de detectar rayos gamma y electrones con energías comprendidas entre 5 GeV y 10 TeV (con una resolución del 1,5% a los 100 GeV), así como rayos cósmicos con energías de 100 GeV a 100 TeV. DAMPE es un proyecto internacional nacido en 2011 que cuenta con la colaboración de Suiza e Italia. Este observatorio se une a otros detectores similares en órbita, como son el AMS-02 y el Calorimetric Electron Telescope, localizados en el exterior de la ISS. Pero a diferencia de estos, DAMPE explorará por primera vez los fotones y partículas en el rango de energías de teraelectrónvoltios (TeV). DAMPE, situado en una órbita polar de 500 kilómetros de altura, tendrá una vida útil de tres años como mínimo.

Detectores de DAMPE ().
Detectores de DAMPE (The DAMPE collaboration).
sasa (The DAMPE collaboration).
Estructura del detector (The DAMPE collaboration).
Imagen de la carga útil de DAMPE (The DAMPE collaboration).
Imagen de la carga útil de DAMPE (The DAMPE collaboration).
as (The DAMPE collaboration).
Comparativa entre DAMPE y otros detectores espaciales de rayos cósmicos y rayos gamma (The DAMPE collaboration).
DAMPE (The DAMPE collaboration).
DAMPE (The DAMPE collaboration).

Cohete Larga Marcha CZ-2D

El Larga Marcha CZ-2D (长征二号丁, Cháng Zhēng 2D) es un cohete de dos etapas y tiene capacidad para poner 1300 kg en una órbita heliosíncrona (SSO) de 700 km de altura o unos 3300 kg en LEO. A pesar de su nombre, el CZ-2D es básicamente una versión de dos etapas del CZ-4 desarrollado inicialmente por SAST (Shanghai Academy of Space Technology) para lanzar la familia más avanzada de los satélites espías de la serie FSW. En 2003 se introdujo una nueva versión con una segunda etapa rediseñada, que es la que está actualmente en servicio.

lm-2d_pic
Detalles del CZ-2D: 1: Cofia, 2: Carga útil, 3: Adaptador con el lanzador, 4: Parte frontal del tanque de oxidante de la segunda etapa, 5: Aviónica, 6: Sección interfase, 7: Tanque de oxidante de la segunda etapa, 8: Sección intertanque, 9: Tanque de combustible de la segunda etapa, 10: Motor vernier de la segunda etapa, 11: Motor principal de la segunda etapa, 12: Sección interfase, 13: Estructura interfase, 14: Tanque de oxidante de la primera etapa, 15: Sección intertanque, 16: Tanque de combustible de la primera etapa, 17: Sección de transición trasera, 18: Aleta estabilizadora, 19: Motor de la primera etapa.

El CZ-2D tiene una masa total al lanzamiento de 232,25 toneladas, un diámetro de 3,35 m y una longitud de 41,056 m. La primera etapa (L-180 en la versión antigua o L-182 en la nueva) tiene una masa de 192,7 toneladas (183,2 toneladas de combustible), una longitud de 27,910 m y es muy similar a la del CZ-4. Hace uso de un motor YF-21C (DaFY 6-2) de cuatro cámaras que quema tetróxido de nitrógeno y UDMH con 2961,6 kN de empuje en total (740,4 kN cada cámara al nivel del mar) y unos 256 segundos de impulso específico (Isp). El motor YF-21C está compuesto por cuatro motores YF-20C. El control de vuelo de la primera etapa se consigue mediante el giro de los motores.

Motor YF-21B (CALT).
Motor YF-21C (CALT).

La segunda etapa (L-53), basada en la del CZ-4, tiene una masa de 52,7 toneladas de combustible y una longitud de 10,9 m. Emplea un motor YF-24C con un Isp de unos 294 s, dividido en un motor principal YF-22B (DaFY 20-1) de 742,04 kN y uno vernier con cuatro cámaras YF-23 (DaFY 21-1) de 47,1 kN de empuje en total. El empuje total de la segunda etapa es de 789,14 kN. El tamaño de la cofia es de 6,983 x 3,35 metros. El CZ-2D puede usar dos tipos de cofia, una con un diámetro de 2,9 metros y otra de 3,35 metros.

Motor YF-24 (CALT).
Motor YF-24C (CALT).
1
Familia Larga Marcha (SGWIC).

Etapas del lanzamiento:

  • T-120 minutos: activación del equipo de tierra.
  • T-100 min: activación del sistema de control y las APUS.
  • T-70 min: activación del sistema de telemetría.
  • T-60 min: introducción de los datos de lanzamiento actualizados.
  • T-40 min: presurización del sistema de propulsión.
  • T-30 min: retirada de los brazos de la torre de servicio.
  • T-2 min: el cohete pasa a potencia interna.
  • T-1 min: separación de los umbilicales.
  • T-30 s: activado del sistema de control de propulsión.
  • T-0 s: ignición. T+17 s: cabeceo del cohete.
  • T+155,5: apagado de la primera etapa.
  • T+156,7 s: separación de la primera etapa.
  • T+186,7 s: separación de la cofia.
  • T+323,6 s: apagado del motor principal de la segunda etapa.
  • T+728,6 s: apagado de los motores vernier de la segunda etapa.
  • T+773,6 s: separación del satélite.
Versión actual del CZ-2D (mil.news.sina.com.cn).
Versión actual del CZ-2D (mil.news.sina.com.cn).

El Centro de Lanzamiento de Jiuquan (酒泉卫星发射中心) se encuentra situado en pleno desierto de Gobi. Hasta que se inaugure el nuevo centro de Wenchang (文昌卫星发射中心) en la isla de Hainan, Jiuquan sigue siendo el centro de lanzamiento más moderno del país. Las instalaciones están divididas en dos zonas: una dedicada a la integración de vehículos -en la que destaca el Edificio de Ensamblaje Vertical o VPB (Vertical Processing Building), muy similar al VAB estadounidense (pero mucho más pequeño)-, y otra con dos rampas de lanzamiento.

Mapa del centro espacial (CALT).
Mapa del centro espacial (CALT).
Zona de integración de Jiuquan (CALT).
Zona de integración de Jiuquan (CALT).
Interior del edificio de ensamblaje vertical (CALT).
Interior del edificio de ensamblaje vertical (CALT).
El centro espacial de Jiuquan en Google Earth. A la derecha se aprecian las dos rampas (Google).
El centro espacial de Jiuquan en Google Earth. A la derecha se aprecian las dos rampas (Google).

Lanzamiento:

£¨¿Æ¼¼£©£¨4£©ÎÒ¹ú³É¹¦·¢Éä°µÎïÖÊÁ£×Ó̽²âÎÀÐÇ £¨¿Æ¼¼£©£¨3£©ÎÒ¹ú³É¹¦·¢Éä°µÎïÖÊÁ£×Ó̽²âÎÀÐÇ

Vídeo del lanzamiento:



9 Comentarios

  1. Desconozco si los chinos tienen muchas misiones en las que colaboren con otros países, pero ojalá se convierta en algo habitual, porque creo que todos nos podemos beneficiar de estas colaboraciones.
    Me ha sorprendido gratamente porque creo que es la primera vez que reparo en ello.

    1. El problema de China y la colaboración internacional es que no pueden llevar ningún satélite que lleve componentes fabricados en EEUU debido al incidente del Intelsat 708. Así se hace bastante difícil colaborar.

  2. por fin algo cientifico con un larga marcha ,pero me párese algo inútil por que algunos científicos creen que la materia oscura no existe y que la ley de gravitcion esta errada

Deja un comentario